Set of small-molecule chemicals found within a biological sample
- Genome(DNA) > Transcriptome(RNA) > Proteome(Proteins) > Metabolome(Metabolities) > Phenome(Metabolic syndorme, Psychiatric disease)
Network Analysis
- (Based on Omics) Genomics, Transcriptomics, Proteomics, Lipidomics, Metabolomics
Scaling Analysis
Open Databases for Drug Development
- KEGG(Kyoto Encyclopedia of Genes and Genomes)
- CTD(Comperative toxicogenomics)
- ChEMBL(Chemical European Molecular Biology Laborotory)
Drug Development Process
- Target Discovery
- Expression analysis
- in-vitro function, in-vivo validation(knockout)
- Bioinformatics
- Discovery & Screening
- Discovery : Structural drug desgin
- Screening : In-vitro, Ex&In-vivo
- Lead Optimization
- Traditional medicinal chemistry
- Retional drug desgin
- ADMET
- BA
- Systemic exposure
- Characteristic for ADMET
- Development
- Clinic Phase
- Registration
- Market
Cost of Target Discovery
Drug > Target(Therapeutic Effect), off-Target(Side Effect)
Drug-Target Network
- Drug, Target, Disease, Gene
- Interaction Type
- Drug-Target, Drug-Drug, Target-Gene, Disease-Disease, Drug-Disease, …
CADD : Computer-Aided Drug Discovery
- SBDD, Structure-based drug design(Direct drug design) : Molecular docking
- LBDD, Ligand-based drug design(Indirect drug design) : Quantitative structure-activity relationship (QSAR)
Molecular Binding under Statistical Thermodynamic Perspective
Definition of Free Energy
[REF|5, Calculation of Binding Free Energies]
Gibbs free energy gradient acts as a driving force for a biological system.
$$\begin{align*}
F &= U-TS = -\frac{1}{\beta}\ln{Q(N,V,T)} \\
G &= H-TS = -\frac{1}{\beta}\ln{Q(N,P,T)} \\
\end{align*}$$
Gibbs free energy
$$\Delta G_{bind} = -k_{B}T\ln{\frac{C^{o}}{8\pi^{2}}\frac{\sigma_{P}\sigma_{L}}{\sigma_{PL}}\frac{Z_{PL}}{Z_{P}Z_{L}}} + P^{o}\Delta V_{PL}$$
- $k_{B}$ : Boltzman Constant
- $T, P, V$ : Temperature, Pressure, Volume
- $C^{o}$ : Standard concentration (1 M)
- $Z$: Partition functions
- $\sigma$: Symmetry numbers
Bennet’s Acceptance Ratio (BAR)
From end state equilibrium sampling
$$\Delta G_{bind} = \frac{1}{\beta} \frac{\left <f(H_{A}-H_{B}+C)\right >_{B}}{\left <f(H_{B}-H_{A}-C) \right >_{A}} + C$$
$$f(x)=\frac{1}{1+e^{\beta x}},\quad C=\frac{1}{\beta}\ln{\frac{Q_{A}}{Q_{B}}\frac{n_{B}}{n_{A}}}$$
Thermodynamic integration (TI)
Alchemical transition
$$\Delta G_{bind} = \int_{0}^{1} \left \langle \frac{\partial H}{\partial \lambda} \right \rangle_{\lambda}\, d\lambda$$
The Quasi-Harmonic Approximation
$$\begin{align*}
\Delta G_{bind} & = -k_{B}T \ln \frac{K}{V_{ref}} \\
& = k_{B}T \ln {(8\pi^{2} V_{ref})} - k_{B}T \ln {\int {H(\mathbf{r},\boldsymbol{\Omega})e^{-\beta \omega(\mathbf{r},\boldsymbol{\Omega})}}\, d\mathbf{r}d\boldsymbol{\Omega}} \\
& = k_{B}T \ln {(8\pi^{2} V_{ref}) + \omega_{min}-\frac{k_{B}T}{2} \ln{((2\pi)^{6}\det{C_{\mathbf{r}, \boldsymbol{\Omega}}}})} \\
\end{align*}$$
- $\Delta G_{bind}$ : Absolute binding free energy
- $k_{B}$ : Boltzmann constant
- $T$ : Absolute temperature
- $V_{ref}$ : Reference volume in units consistent
- $\beta=\frac{1}{k_{B}T}$
- $\mathbf{r}, \boldsymbol{\Omega}$ : Relative position, orientation
- $H$ : Ensemble average - $C_{\mathbf{r}, \boldsymbol{\Omega}}$: 6 by 6 fluctuation covariance matrix of the three positional and three orientation coordinates
- $k_{B}$ : Boltzmann constant
- $T$ : Absolute temperature
- $V_{ref}$ : Reference volume in units consistent
- $\beta=\frac{1}{k_{B}T}$
- $\mathbf{r}, \boldsymbol{\Omega}$ : Relative position, orientation
- $H$ : Ensemble average - $C_{\mathbf{r}, \boldsymbol{\Omega}}$: 6 by 6 fluctuation covariance matrix of the three positional and three orientation coordinates
Free Energy Caluations for Lead Optimization
[REF|Free-energy calculations in structure-based drug design]
$$ L+R \rightleftharpoons C $$
$$\Delta F^{0}_{bind} = - RT \ln{K^{0}_{A}}$$
$$K^{0}_{A}=\frac{1}{K^{0}_{D}}=\frac{k_{on}}{k_{off}}=\frac{[C]}{[L][R]}$$
Soft-core potential[REF|Soft-Core Potentials in Thermodynamic Integration. Comparing One- and Two-Step Transformations]
$$V_{ij} = 4\epsilon_{ij}(1-\lambda)^{t} ([\alpha_{LJ}\lambda^{s} + (r_{ij}/\sigma_{ij})^{n}]^{-12/n} - [\alpha_{LJ}\lambda^{s}+(r_{ij}/\sigma_{ij})^{n}]^{-6/n})$$
IC50
$$IC_{50} = K^{I}_{D} \left ( 1 + \frac{[L_{0}]}{D^{L}_{D}} \right )$$
Structure/Binding Affinity Prediction
Experimental Approach
- NMR Methods for the Determination of Protein–Ligand Interactions
- Detection and Verification of Ligand Binding
- Interaction Site Mapping
- Interaction Models and Binding Affinity
- Molecular Recognition
- Structure of Protein–Ligand Complexes
- X-ray crystallography
- cryo-electron microscopy
Theoretical Approach
- MM/PBSA : the molecule mechanics/Poisson–Boltzmann surface area
- MM/GBSA : the molecule mechanics/generalized Born surface area
- LIE : Linear Interaction Methods
- Fragmentation Methods
- the fragment molecular orbital (FMO) method
- the polarized continuum model (PCM)
- Poisson–Boltzmann (PB) solvation
- the electrostatically embedded pairwise additive (EE-PA) model
- the molecular fractionation with conjugate caps (MFCC) method
- the electrostatically embedded generalized MFCC (EE-GMFCC)
- the polarizable multipole interaction with supermolecular pairs (PMISP) method
[REF|Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods]
- The QM-cluster approach
- Continuum-Solvation Methods
Emprical Approach
Protein-Ligand Interaction
[REF|Metal–ligand interactions in drug design]
Design Considerations
- Drug Target Protein Classes
- GPCRs
- Ion channels
- Kinases
- Proteases
- Molecular Docking
- Flexible docking / Rigid docking
- Scoring Function
- Force Field
- Empirical scoring(Solvent Accessible Surface Area value, SASA)
- Knowledge-Based scoring
- Search Algorithm
- Lamarckian Genetic Algorithm
- Shape Matching
- Evoluationary Optimization
- Genetic Algorithm
- Hybrid
- Local Optimization
- Simulated Annealing
- Swarm-Intelligence Algorithm
- Molecular Interactions
- protein–ligand(small molecule)
- protein–protein
- protein–nucleic acid
- protein–carbohydrate
- protein–lipid
- Binding Site
- Water Solvation and Docking
Thermodynamic cycle scheme for the confine-and-release by lock and key model
$$\Delta G^{o}_{bind} = \Delta G_{conf} + \Delta G^{o}_{bind,C} + \Delta G_{rel}$$
- $\Delta G^{o}_{bind}$ : the true (standard) binding free energy
- $\Delta G_{conf}$ : the free energy of confining the protein to this smaller region of configuration space in the unbound state
- $\Delta G^{o}_{bind,C}$ : the standard binding free energy of the ligand to the confined protein
- $\Delta G_{rel}$ : the free energy of releasing the protein from conformational confinement in the bound state
- $\Delta G_{conf}$ : the free energy of confining the protein to this smaller region of configuration space in the unbound state
- $\Delta G^{o}_{bind,C}$ : the standard binding free energy of the ligand to the confined protein
- $\Delta G_{rel}$ : the free energy of releasing the protein from conformational confinement in the bound state
G protein-coupled receptor
Protein-Ligand Complex
- VDW interaction
- hydrogen bond interaction
- metal-ligand interaction
- hydrophobic interaction
Evaluation Metric
- scoring power, ranking power, docking power, screening power
Popular docking programs for DTI predictions
- X-Score10, AutoDock Vina8, ChemPLP@GOLD15, GlideScore
Druggability Prediction
Additionals
Big Firm in Pharmaceutical Industry
- Johnson & Johnson
- Pfizer
- Santen
- Merck
- Novartis
Reference
- List of protein-ligand docking software
- AutoDock Vina Installation (Tutorial)
- Computational Chemistry
- The Relation of State Functions to the Partition Function
- Lecture 8: Free energy
- Cambridge MedChem Consulting
- RCSB PDB Search
- FMol
- alphafold_pytorch
- (2020) Metal–ligand interactions in drug design
- (2020) Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors
- (2020) Improved protein structure prediction using potentials from deep learning
- (2018) A bioinorganic approach to fragment-based drug discovery targeting metalloenzymes
- (2017) Mechanistic enzymology in drug discovery: a fresh perspective
- (2016) Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods
- (2016) Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods
- (2015) Calculation of Binding Free Energies
- (2015) Accurate calculation of the absolute free energy of binding for drug molecules
- (2012) Binding free energy, energy and entropy calculations using simple model systems
- (2011) Soft-Core Potentials in Thermodynamic Integration. Comparing One- and Two-Step Transformations
- (2010) Free-energy calculations in structure-based drug design
- (2010) High-throughput virtual screening using quantum mechanical probes: discovery of selective kinase inhibitors
- (2007) The Confine-and-Release Method: Obtaining Correct Binding Free Energies in the Presence of Protein Conformational Change
- (2004) A genetic algorithm for the ligand-protein docking problem