Elementary quantum mechanics

The Schrodinger equation

The Schrodinger equation $$\hat{\mathcal{H}}\Psi_{i} = E_{i}\Psi_{i}$$ The Hamiltonian for a system consisting of $M$ nuclei and $N$ electrons $$\hat{\mathcal{H}} = -\frac{1}{2} \sum_{i=1}^{N} {\nabla^{2}_{i}} -\frac{1}{2} \sum_{A=1}^{M} {\frac{1}{M_{A}}\nabla^{2}_{A}} -\sum_{i=1}^{N} \sum_{A=1}^{M} {\frac{Z_{A}}{r_{iA}}} + \sum_{i=1}^{N} \sum_{j>i}^{N} {\frac{1}{r_{ij}}} + \sum_{A=1}^{M} \sum_{B>A}^{M} {\frac{Z_{A}Z_{B}}{R_{AB}}}$$ Born-Oppenheimer approximation $$\hat{\mathcal{H}}_{elec}\Psi_{elec} = E_{elec}\Psi_{elec}$$ $$\hat{\mathcal{H}}_{elec} = -\frac{1}{2} \sum_{i=1}^{N} {\nabla^{2}_{i}} -\sum_{i=1}^{N} \sum_{A=1}^{M} {\frac{Z_{A}}{r_{iA}}} + \sum_{i=1}^{N} \sum_{j>i}^{N} {\frac{1}{r_{ij}}}$$ $$E_{tot}=E_{elec}+E_{nuc}\qquad \text{where } E_{nuc}=\sum_{A=1}^{M}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}$$

The variational principle for the ground state

$$E[\Psi]=\frac{\left \langle\Psi|\hat{\mathcal{H}}|\Psi\right \rangle}{\left \langle\Psi|\Psi\right \rangle} \qquad \text{where} \left \langle \Psi|\hat{\mathcal{H}}|\Psi \right \rangle = \int {\Psi^{*}\hat{\mathcal{H}}\Psi}\, d\overrightarrow{x} $$ $$E_{0}=\min_{\Psi \rightarrow N}{E[\Psi]} = \min_{\Psi \rightarrow N}{\left \langle | T + V_{Ne} + V_{ee} | \right \rangle}$$

The Hartree-Fock approximation

The Slater determinant $$\Psi_{0} \approx \Psi_{HF} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(\overrightarrow{x_{1}}) & \psi_{2}(\overrightarrow{x_{1}}) & \cdots & \psi_{N}(\overrightarrow{x_{1}})\\ \psi_{1}(\overrightarrow{x_{2}}) & \psi_{2}(\overrightarrow{x_{2}}) & \cdots & \psi_{N}(\overrightarrow{x_{2}}) \\ \vdots & \vdots & & \vdots \\ \psi_{1}(\overrightarrow{x_{N}}) & \psi_{2}(\overrightarrow{x_{N}}) & \cdots & \psi_{N}(\overrightarrow{x_{N}}) \\ \end{vmatrix} $$ The Hartree-Fock approximation $$ E_{HF}=min_{\Psi_{HF}\rightarrow N}E[\Psi_{HF}] $$ $$ E_{HF} = \left \langle \Psi_{HF} | \hat{\mathcal{H}} | \Psi_{HF} \right \rangle = \sum_{i=1}^{N} {\hat{\mathcal{H}}_{i}} + \frac{1}{2} \sum_{i,j=1}^{N} {(J_{ij}-K_{ij})} $$ $$ \hat{\mathcal{H}}_{i} \equiv \int {\psi^{*}_{i}(\overrightarrow{x})[-\frac{1}{2}\nabla^{2}- V_{ext}(\overrightarrow{x})]\psi_{i}(\overrightarrow{x})} \, d\overrightarrow{x} $$ Non-Classical Contribution(Self-Interaction correction) : Coulomb integrals and Exchange integrals $$\begin{align*} J_{ij} &= \iint \psi_{i}(\overrightarrow{x_{1}}) \psi^{*}_{i}(\overrightarrow{x_{1}}) \frac{1}{r_{12}} \psi_{j}^{*}(\overrightarrow{x_{2}}) \psi_{j}(\overrightarrow{x_{2}}) \, d\overrightarrow{x_{1}} \, d\overrightarrow{x_{2}} \\ K_{ij} &= \iint \psi_{i}^{*}(\overrightarrow{x_{1}}) \psi_{j}(\overrightarrow{x_{1}}) \frac{1}{r_{12}} \psi_{i}(\overrightarrow{x_{2}}) \psi_{j}^{*}(\overrightarrow{x_{1}}) \, d\overrightarrow{x_{1}} \, d\overrightarrow{x_{2}}\\ \end{align*}$$ $$ J_{ij} \ge K_{ij} \ge 0 $$ The minimization of the energy functional with the normalization conditions $$ \int {\psi_{i}^{*}(\overrightarrow{x})\psi_{j}(\overrightarrow{x})} \, d\overrightarrow{x} = \delta_{ij} $$ The Hartree-Fock differential equations $$ f\psi_{i} = \epsilon_{i}\psi_{i} $$ $$ f = -\frac{1}{2}\nabla^{2}_{i} - \sum_{A}^{M} {\frac{Z_{A}}{r_{iA}}} + V_{HF}(i) $$ Hartree-Fock potential $$\begin{align*} V_{HF}(\overrightarrow{x_{1}}) &= \sum_{j}^{N} {(J_{j}(\overrightarrow{x_{1}})-K_{j}(\overrightarrow{x_{1}}))} \\ J_{j}(\overrightarrow{x_{1}}) &= \int \left \vert \psi_{j}(\overrightarrow{x_{2}}) \right \vert^{2} \frac{1}{r_{12}} \, d\overrightarrow{x_{2}} \\ K_{j}(\overrightarrow{x_{1}}) \psi_{i}(\overrightarrow{x_{1}}) &= \int \psi_{j}^{*}(\overrightarrow{x_{2}}) \frac{1}{r_{12}} \psi_{i}(\overrightarrow{x_{2}}) \, d\overrightarrow{x_{2}} \psi_{j}(\overrightarrow{x_{1}}) \\ \end{align*}$$




Early density functional theories

The electron density

The electron density $$\rho(\overrightarrow{r}) = N \int \cdots \int {\left \vert \Psi(\overrightarrow{x_{1}},\overrightarrow{x_{2}},\cdots,\overrightarrow{x_{N}}) \right \vert^{2} } ,\ ds_{1}d\overrightarrow{x_{1}}d\overrightarrow{x_{2}} \cdots d\overrightarrow{x_{N}}$$ $$ \rho( \overrightarrow{r} \rightarrow \infty ) = 0 \qquad \int {\rho(\overrightarrow{r})} \, d\overrightarrow{r}= N $$ $$ \lim_{r_{i}A \to 0} {[\nabla_{r}+2Z_{A}]\overline{\rho}(\overrightarrow{r})} = 0 $$ $$ \rho(\overrightarrow{r}) \sim e^{-2\sqrt{2I}\left \vert \overrightarrow{r} \right \vert} $$

The Thomas-Fermi model

$$ T_{TF}[\rho(\overrightarrow{r})] = \frac{3}{10}(3\pi^{2})^{2/3} \int \rho^{5/3}(\overrightarrow{r}) \, d\overrightarrow{r} $$ $$ E_{TF}[\rho(\overrightarrow{r})] = \frac{3}{10}(3\pi^{2})^{2/3} \int \rho^{5/3}(\overrightarrow{r}) \, d\overrightarrow{r} -Z \int {\frac{\rho(\overrightarrow{r})}{r}}\, d\overrightarrow{r} + \frac{1}{2} \iint \frac{\rho(\overrightarrow{r_{1}})\rho(\overrightarrow{r_{2}})}{r_{12}} \,d\overrightarrow{r_{1}} \,d\overrightarrow{r_{2}} $$




The Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem

The exact kinetic energy of a non-interacting reference system with the same density as the real $$\begin{align*} T_{S} &= -\frac{1}{2} \sum_{i}^{N} \left \langle \psi_{i} | \nabla^2 | \psi_{i} \right \rangle\\ \rho_{S}(\vec{r}) &= \sum_{i}^{N} \sum_{s} \left \vert \psi_{i}(\vec{r},s) \right \vert^{2} = \rho(\vec{r}) \\ \end{align*}$$ Separation of the functional $F[\rho]$ $$E[\rho] = E_{Ne}[\rho] + T[\rho] + E_{ee}[\rho] = \int {\rho(\vec{r})V_{Ne}(\vec{r})} \, d\vec{r} + F_{HK}[\rho]$$ $$\color{red}{F_{HF}[\rho]} = \color{red}{T[\rho]} + E_{ee}[\rho]$$ $$E_{ee}[\rho] = \frac{1}{2} \iint {\frac{\rho(\vec{r_{1}})\rho(\vec{r_{2}})}{r_{12}}} \,d\vec{r_{1}} \,d\vec{r_{2}} + E_{ncl} = J[\rho] + \color{red}{E_{ncl}[\rho]}$$

The second Hohenberg-Kohn theorem

$$ E_{0} \le E[\tilde{\rho}] = T[\tilde{\rho}] + E_{Ne}[\tilde{\rho}] + E_{ee}[\tilde{\rho}] $$




The Kohn-Sham approach

The Kohn-Sham equations : One-electron Schrödinger-like equations

$$F[\rho] = T_{S} + J[\rho] + E_{XC}[\rho]$$ $$\begin{align*} T_{S} &= \frac{1}{2} \sum_{i}^{N} \left \langle \psi_{i} | \nabla^{2} |\psi_{i} \right \rangle \\ E_{XC}[\rho] &\equiv (T[\rho] - T_{S}[\rho]) + (E_{ee}[\rho] - J[\rho]) \\ \end{align*}$$ The energy of the interacting system for uniquely determining the orbitals in our non-interacting reference system $$\begin{align*} E[\rho] &= T_{S} + J[\rho] +E_{XC}[\rho] + E_{Ne}[\rho] \\ &= T_{S} + \frac{1}{2} \iint \frac{\rho(\vec{r_{1}})\rho(\vec{r_{2}})}{r_{12}} \,d\vec{r_{1}} \,d\vec{r_{2}} + E_{XC}[\rho] + \int V_{Ne}\rho(\vec{r}) \, d\vec{r} \\ &= \frac{1}{2} \sum_{i}^{N} \left \langle \psi_{i} | \nabla^{2} |\psi_{i} \right \rangle + \frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \iint \left \vert \psi_{i}(\vec{r_{1}}) \right \vert^2 \frac{1}{r_{12}} \left \vert \psi_{j}(\vec{r_{2}}) \right \vert^2 \, d\vec{r_{1}} \,d\vec{r_{2}} \\ &\qquad + E_{XC}[\rho] - \sum_{i}^{N} \int \sum_{A}^{M} \frac{Z_{A}}{r_{1A}} \left \vert \psi_{i}(\vec{r_{1}}) \right \vert^2 \,d\vec{r_{1}} \end{align*}$$ Kohn-Sham equations $$ \left ( -\frac{1}{2}\nabla^{2} + \left [ \int {\frac{\rho(\vec{r_{2}})}{r_{12}}} \,d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) - \sum_{A}^{M} {\frac{Z_{A}}{r_{1A}}} \right ] \right ) \psi_{i} = \left ( -\frac{1}{2}\nabla^{2} + V_{S}(\vec{r_{1}}) \right ) \psi_{i} = \epsilon_{i}\psi_{i} $$ $$ V_{S}(\vec{r_{1}}) = \int \frac{\rho(\vec{r_{2}})}{r_{12}} \, d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) - \sum_{A}^{M}\frac{Z_{A}}{r_{1A}} $$ $$\text{constraint}\quad \left \langle \psi_{i} | \psi_{j}\right \rangle = \delta_{ij}$$




The exchange-correlation functionals

The local density approximation(LDA)

$$E_{XC}^{LDA}[\rho] = \int \rho(\vec{r})\epsilon_{XC}(\rho(\vec{r})) \, d\vec{r}$$ $$\begin{align*} \epsilon_{XC}(\rho(\vec{r})) &= \epsilon_{X}(\rho(\vec{r})) + \epsilon_{C}(\rho(\vec{r}))\\ \epsilon_{X} &= -\frac{3}{4} \left ( \frac{3\rho(\vec{r})}{\pi} \right )^{1/3} \\ \end{align*}$$

The generalized gradient approximation

$$E_{XC}^{GGA}[\rho_{\alpha}, \rho_{\beta}] = \int f(\rho_{\alpha}, \rho_{\beta}, \nabla_{\rho_{\alpha}}, \nabla_{\rho_{\beta}}) \, d\vec{r}$$

Hybrid functional

$$ E_{XC}^{hyb} = \alpha E_{X}^{KS} + (1-\alpha)E_{XC}^{GGA} $$




The basic machinary of DFT

The LCAO Ansatz in the The Kohn-Sham equations

The Kohn-Sham one-electron operator from Kohn-Sham equations $$ \hat{f}^{KS}\psi_{i} = \epsilon_{i}\psi_{i} $$ $$ \left ( \int {\frac{\rho(\vec{r_{2}})}{r_{12}}} \,d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) - \sum_{A}^{M} {\frac{Z_{A}}{r_{1A}}} \right ) \psi_{i} = \epsilon_{i}\psi_{i} $$ K-S orbital $$ \psi_{i} = \sum_{\mu=1}^{L} c_{\mu i}\eta_{\mu} $$

Roothaan equations $$\hat{F}^{KS}_{\mu\nu}\hat{C} = \hat{S}_{\mu \nu}\hat{C}\hat{\epsilon}$$
Kohn-Sham matrix and overlap matrix $$\begin{align*} F_{\mu \nu}^{KS} &= \int {\eta_{\mu} (\vec{r_{1}}) \hat{f}^{KS}(\vec{r_{1}}) \eta_{\nu}(\vec{r_{1}}) } \, d\vec{r_{1}} \\ S_{\mu \nu} &= \int {\eta_{\mu}(\vec{r_{1}})\eta_{\nu}(\vec{r_{1}}) } \, d\vec{r_{1}} \\ \end{align*}$$ Extended Kohn-Sham Operator $$\begin{align*} \hat{F}_{\mu \nu}^{KS} &= h_{\mu\nu} + \int { \eta_{\mu} (\vec{r_{1}}) \left ( \int { \frac{\rho(\vec{r_{2}})}{r_{12}} } \, d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) \right ) \eta_{\nu} (\vec{r_{1}}) } \, d\vec{r_{1}} \\ &= \int { \eta_{\mu} (\vec{r_{1}}) \left ( -\frac{1}{2} \nabla^{2} - \sum_{A}^{M} \frac{Z_{A}}{r_{1A}} + \int { \frac{\rho(\vec{r_{2}})}{r_{12}} } \, d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) \right ) \eta_{\nu} (\vec{r_{1}}) } \, d\vec{r_{1}} \\ h_{\mu\nu} &= \int { \eta_{\mu} (\vec{r_{1}}) \left ( -\frac{1}{2} \nabla^{2} - \sum_{A}^{M} \frac{Z_{A}}{r_{1A}} \right ) \eta_{\nu} (\vec{r_{1}}) } \, d\vec{r_{1}} \\ \end{align*}$$ Charge density in the LCAO scheme $$ \rho(\vec{r}) = \sum_{i}^{L}\left \vert \psi_{i}(\vec{r}) \right \vert^{2} = \sum_{\mu}^{L}\sum_{\nu}^{L}P_{\mu\nu}\eta_{\mu}(\vec{r})\eta_{\nu}(\vec{r}) $$ $$ \text{density matrix,}\quad P_{\mu\nu} = \sum_{i}^{N} c_{\mu i}c_{\nu i} $$ Coulomb contribution and exchange-correlation and Hartree-Fock exchange integral $$\begin{align*} J_{\mu\nu} &= \sum_{\lambda}^{L}\sum_{\sigma}^{L} P_{\lambda\sigma} \iint \eta_{\mu}(\vec{r_{1}})\eta_{\nu}(\vec{r_{1}}) \frac{1}{r_{12}} \eta_{\lambda}(\vec{r_{2}})\eta_{\sigma}(\vec{r_{2}}) \, d\vec{r_{1}}\,d\vec{r_{2}} \\ V_{\mu\nu}^{XC} &= \int \eta_{\mu}(\vec{r_{1}})V_{XC}(\vec{r_{1}})\eta_{\nu}(\vec{r_{1}})\,d\vec{r_{1}}\\ K_{\mu\nu} &= \sum_{\lambda}^{L}\sum_{\sigma}^{L} P_{\lambda\sigma} \iint \eta_{\mu}(\vec{x_{1}})\eta_{\lambda}(\vec{x_{1}}) \frac{1}{r_{12}} \eta_{\nu}(\vec{x_{2}})\eta_{\sigma}(\vec{x_{2}}) \, d\vec{x_{1}}\,d\vec{x_{2}} \\ \end{align*}$$

Basis sets

Slater-Type Orbitals (STO) $$\eta^{STO} = Nr^{n-1}e^{-\beta r}Y_{lm}(\theta, \phi)$$ Gaussian-Type Orbitals (GTO) $$\eta^{GTO} = Nx^{l}y^{m}z^{b}e^{-\alpha r}$$ Contracted Gaussian Functions (CGF) $$ \eta_{\tau}^{CGF} = \sum_{a}^{A} d_{a\tau}\eta_{a}^{GTO} $$

Self-Consistent Field

image [REF|10]




DFT applications

Applications in quantum chemistry

 

Applications in solid state physics

 

DFT in Molecular Electronics

 

 

 

 


Reference
  1. List of quantum chemistry and solid state physics software
  2. Korea Supercomputing Center
  3. Quantum Espresso
  4. CALYPSO
  5. Introduction to Density Functional Theory(Juan Carlos Cuevas)
  6. SciFinder - Chemical Abstracts Service
  7. Crystallography Open Database
  8. Basis Set
  9. DFT_L1
  10. DFT_L2
  11. DFT_L3
  12. DFT_L4
  13. DFT_L5
  14. DFT_L6
  15. DFT_L7
  16. DFT_L8
  17. DFT_L9
  18. DFT_L10
  19. DFT_L11
  20. Theoretical-Physics
  21. Self-Consistent Field
  22. Solving Hartree Fock Equation using a Basis Set HF Roothaan equation
Related Articles
  1. [Chemistry] Ab initio methods
  2. [Chemistry] Molecular Mechanics and Dynamics
  3. [Chemistry] Quantum Chemistry Methods
  4. [Chemistry] QM/MM : Quantum Mechanics/Molecular Mechanics