Elementary quantum mechanics
The Schrodinger equation
The Schrodinger equation
$$\hat{\mathcal{H}}\Psi_{i} = E_{i}\Psi_{i}$$
The Hamiltonian for a system consisting of $M$ nuclei and $N$ electrons
$$\hat{\mathcal{H}} = -\frac{1}{2} \sum_{i=1}^{N} {\nabla^{2}_{i}}
-\frac{1}{2} \sum_{A=1}^{M} {\frac{1}{M_{A}}\nabla^{2}_{A}}
-\sum_{i=1}^{N} \sum_{A=1}^{M} {\frac{Z_{A}}{r_{iA}}}
+ \sum_{i=1}^{N} \sum_{j>i}^{N} {\frac{1}{r_{ij}}}
+ \sum_{A=1}^{M} \sum_{B>A}^{M} {\frac{Z_{A}Z_{B}}{R_{AB}}}$$
Born-Oppenheimer approximation
$$\hat{\mathcal{H}}_{elec}\Psi_{elec} = E_{elec}\Psi_{elec}$$
$$\hat{\mathcal{H}}_{elec} = -\frac{1}{2} \sum_{i=1}^{N} {\nabla^{2}_{i}}
-\sum_{i=1}^{N} \sum_{A=1}^{M} {\frac{Z_{A}}{r_{iA}}}
+ \sum_{i=1}^{N} \sum_{j>i}^{N} {\frac{1}{r_{ij}}}$$
$$E_{tot}=E_{elec}+E_{nuc}\qquad \text{where } E_{nuc}=\sum_{A=1}^{M}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}}$$
The variational principle for the ground state
$$E[\Psi]=\frac{\left \langle\Psi|\hat{\mathcal{H}}|\Psi\right \rangle}{\left \langle\Psi|\Psi\right \rangle} \qquad \text{where} \left \langle \Psi|\hat{\mathcal{H}}|\Psi \right \rangle = \int {\Psi^{*}\hat{\mathcal{H}}\Psi}\, d\overrightarrow{x} $$
$$E_{0}=\min_{\Psi \rightarrow N}{E[\Psi]} = \min_{\Psi \rightarrow N}{\left \langle | T + V_{Ne} + V_{ee} | \right \rangle}$$
The Hartree-Fock approximation
The Slater determinant
$$\Psi_{0} \approx \Psi_{HF} = \frac{1}{\sqrt{N!}}
\begin{vmatrix}
\psi_{1}(\overrightarrow{x_{1}}) & \psi_{2}(\overrightarrow{x_{1}}) & \cdots & \psi_{N}(\overrightarrow{x_{1}})\\
\psi_{1}(\overrightarrow{x_{2}}) & \psi_{2}(\overrightarrow{x_{2}}) & \cdots & \psi_{N}(\overrightarrow{x_{2}}) \\
\vdots & \vdots & & \vdots \\
\psi_{1}(\overrightarrow{x_{N}}) & \psi_{2}(\overrightarrow{x_{N}}) & \cdots & \psi_{N}(\overrightarrow{x_{N}}) \\
\end{vmatrix}
$$
The Hartree-Fock approximation
$$
E_{HF}=min_{\Psi_{HF}\rightarrow N}E[\Psi_{HF}]
$$
$$
E_{HF} = \left \langle \Psi_{HF} | \hat{\mathcal{H}} | \Psi_{HF} \right \rangle = \sum_{i=1}^{N} {\hat{\mathcal{H}}_{i}} + \frac{1}{2} \sum_{i,j=1}^{N} {(J_{ij}-K_{ij})}
$$
$$
\hat{\mathcal{H}}_{i} \equiv \int {\psi^{*}_{i}(\overrightarrow{x})[-\frac{1}{2}\nabla^{2}- V_{ext}(\overrightarrow{x})]\psi_{i}(\overrightarrow{x})} \, d\overrightarrow{x}
$$
Non-Classical Contribution(Self-Interaction correction) : Coulomb integrals and Exchange integrals
$$\begin{align*}
J_{ij} &= \iint \psi_{i}(\overrightarrow{x_{1}}) \psi^{*}_{i}(\overrightarrow{x_{1}}) \frac{1}{r_{12}} \psi_{j}^{*}(\overrightarrow{x_{2}}) \psi_{j}(\overrightarrow{x_{2}}) \, d\overrightarrow{x_{1}} \, d\overrightarrow{x_{2}} \\
K_{ij} &= \iint \psi_{i}^{*}(\overrightarrow{x_{1}}) \psi_{j}(\overrightarrow{x_{1}}) \frac{1}{r_{12}} \psi_{i}(\overrightarrow{x_{2}}) \psi_{j}^{*}(\overrightarrow{x_{1}}) \, d\overrightarrow{x_{1}} \, d\overrightarrow{x_{2}}\\
\end{align*}$$
$$
J_{ij} \ge K_{ij} \ge 0
$$
The minimization of the energy functional with the normalization conditions
$$
\int {\psi_{i}^{*}(\overrightarrow{x})\psi_{j}(\overrightarrow{x})} \, d\overrightarrow{x} = \delta_{ij}
$$
The Hartree-Fock differential equations
$$
f\psi_{i} = \epsilon_{i}\psi_{i}
$$
$$
f = -\frac{1}{2}\nabla^{2}_{i} - \sum_{A}^{M} {\frac{Z_{A}}{r_{iA}}} + V_{HF}(i)
$$
Hartree-Fock potential
$$\begin{align*}
V_{HF}(\overrightarrow{x_{1}}) &= \sum_{j}^{N} {(J_{j}(\overrightarrow{x_{1}})-K_{j}(\overrightarrow{x_{1}}))} \\
J_{j}(\overrightarrow{x_{1}}) &= \int \left \vert \psi_{j}(\overrightarrow{x_{2}}) \right \vert^{2} \frac{1}{r_{12}} \, d\overrightarrow{x_{2}} \\
K_{j}(\overrightarrow{x_{1}}) \psi_{i}(\overrightarrow{x_{1}}) &= \int \psi_{j}^{*}(\overrightarrow{x_{2}}) \frac{1}{r_{12}} \psi_{i}(\overrightarrow{x_{2}}) \, d\overrightarrow{x_{2}} \psi_{j}(\overrightarrow{x_{1}}) \\
\end{align*}$$
Early density functional theories
The electron density
The electron density
$$\rho(\overrightarrow{r}) = N \int \cdots \int {\left \vert \Psi(\overrightarrow{x_{1}},\overrightarrow{x_{2}},\cdots,\overrightarrow{x_{N}}) \right \vert^{2} } ,\ ds_{1}d\overrightarrow{x_{1}}d\overrightarrow{x_{2}} \cdots d\overrightarrow{x_{N}}$$
$$
\rho( \overrightarrow{r} \rightarrow \infty ) = 0 \qquad \int {\rho(\overrightarrow{r})} \, d\overrightarrow{r}= N
$$
$$
\lim_{r_{i}A \to 0} {[\nabla_{r}+2Z_{A}]\overline{\rho}(\overrightarrow{r})} = 0
$$
$$
\rho(\overrightarrow{r}) \sim e^{-2\sqrt{2I}\left \vert \overrightarrow{r} \right \vert}
$$
The Thomas-Fermi model
$$
T_{TF}[\rho(\overrightarrow{r})] = \frac{3}{10}(3\pi^{2})^{2/3} \int \rho^{5/3}(\overrightarrow{r}) \, d\overrightarrow{r}
$$
$$
E_{TF}[\rho(\overrightarrow{r})] = \frac{3}{10}(3\pi^{2})^{2/3} \int \rho^{5/3}(\overrightarrow{r}) \, d\overrightarrow{r}
-Z \int {\frac{\rho(\overrightarrow{r})}{r}}\, d\overrightarrow{r}
+ \frac{1}{2} \iint \frac{\rho(\overrightarrow{r_{1}})\rho(\overrightarrow{r_{2}})}{r_{12}} \,d\overrightarrow{r_{1}} \,d\overrightarrow{r_{2}}
$$
The Hohenberg-Kohn theorems
The first Hohenberg-Kohn theorem
The exact kinetic energy of a non-interacting reference system with the same density as the real
$$\begin{align*}
T_{S} &= -\frac{1}{2} \sum_{i}^{N} \left \langle \psi_{i} | \nabla^2 | \psi_{i} \right \rangle\\
\rho_{S}(\vec{r}) &= \sum_{i}^{N} \sum_{s} \left \vert \psi_{i}(\vec{r},s) \right \vert^{2} = \rho(\vec{r}) \\
\end{align*}$$
Separation of the functional $F[\rho]$
$$E[\rho] = E_{Ne}[\rho] + T[\rho] + E_{ee}[\rho] = \int {\rho(\vec{r})V_{Ne}(\vec{r})} \, d\vec{r} + F_{HK}[\rho]$$
$$\color{red}{F_{HF}[\rho]} = \color{red}{T[\rho]} + E_{ee}[\rho]$$
$$E_{ee}[\rho] = \frac{1}{2} \iint {\frac{\rho(\vec{r_{1}})\rho(\vec{r_{2}})}{r_{12}}} \,d\vec{r_{1}} \,d\vec{r_{2}} + E_{ncl}
= J[\rho] + \color{red}{E_{ncl}[\rho]}$$
The second Hohenberg-Kohn theorem
$$
E_{0} \le E[\tilde{\rho}] = T[\tilde{\rho}] + E_{Ne}[\tilde{\rho}] + E_{ee}[\tilde{\rho}]
$$
The Kohn-Sham approach
The Kohn-Sham equations : One-electron Schrödinger-like equations
$$F[\rho] = T_{S} + J[\rho] + E_{XC}[\rho]$$
$$\begin{align*}
T_{S} &= \frac{1}{2} \sum_{i}^{N} \left \langle \psi_{i} | \nabla^{2} |\psi_{i} \right \rangle \\
E_{XC}[\rho] &\equiv (T[\rho] - T_{S}[\rho]) + (E_{ee}[\rho] - J[\rho]) \\
\end{align*}$$
The energy of the interacting system for uniquely determining the orbitals in our non-interacting reference system
$$\begin{align*}
E[\rho] &= T_{S} + J[\rho] +E_{XC}[\rho] + E_{Ne}[\rho] \\
&= T_{S} + \frac{1}{2} \iint \frac{\rho(\vec{r_{1}})\rho(\vec{r_{2}})}{r_{12}} \,d\vec{r_{1}} \,d\vec{r_{2}} + E_{XC}[\rho] + \int V_{Ne}\rho(\vec{r}) \, d\vec{r} \\
&= \frac{1}{2} \sum_{i}^{N} \left \langle \psi_{i} | \nabla^{2} |\psi_{i} \right \rangle
+ \frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \iint \left \vert \psi_{i}(\vec{r_{1}}) \right \vert^2 \frac{1}{r_{12}} \left \vert \psi_{j}(\vec{r_{2}}) \right \vert^2 \, d\vec{r_{1}} \,d\vec{r_{2}} \\
&\qquad + E_{XC}[\rho] - \sum_{i}^{N} \int \sum_{A}^{M} \frac{Z_{A}}{r_{1A}} \left \vert \psi_{i}(\vec{r_{1}}) \right \vert^2 \,d\vec{r_{1}}
\end{align*}$$
Kohn-Sham equations
$$
\left ( -\frac{1}{2}\nabla^{2} + \left [ \int {\frac{\rho(\vec{r_{2}})}{r_{12}}} \,d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) - \sum_{A}^{M} {\frac{Z_{A}}{r_{1A}}} \right ] \right ) \psi_{i} = \left ( -\frac{1}{2}\nabla^{2} + V_{S}(\vec{r_{1}}) \right ) \psi_{i} = \epsilon_{i}\psi_{i}
$$
$$
V_{S}(\vec{r_{1}}) = \int \frac{\rho(\vec{r_{2}})}{r_{12}} \, d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) - \sum_{A}^{M}\frac{Z_{A}}{r_{1A}}
$$
$$\text{constraint}\quad \left \langle \psi_{i} | \psi_{j}\right \rangle = \delta_{ij}$$
The exchange-correlation functionals
The local density approximation(LDA)
$$E_{XC}^{LDA}[\rho] = \int \rho(\vec{r})\epsilon_{XC}(\rho(\vec{r})) \, d\vec{r}$$
$$\begin{align*}
\epsilon_{XC}(\rho(\vec{r})) &= \epsilon_{X}(\rho(\vec{r})) + \epsilon_{C}(\rho(\vec{r}))\\
\epsilon_{X} &= -\frac{3}{4} \left ( \frac{3\rho(\vec{r})}{\pi} \right )^{1/3} \\
\end{align*}$$
The generalized gradient approximation
$$E_{XC}^{GGA}[\rho_{\alpha}, \rho_{\beta}] = \int f(\rho_{\alpha}, \rho_{\beta}, \nabla_{\rho_{\alpha}}, \nabla_{\rho_{\beta}}) \, d\vec{r}$$
Hybrid functional
$$
E_{XC}^{hyb} = \alpha E_{X}^{KS} + (1-\alpha)E_{XC}^{GGA}
$$
The basic machinary of DFT
The LCAO Ansatz in the The Kohn-Sham equations
The Kohn-Sham one-electron operator from Kohn-Sham equations
$$
\hat{f}^{KS}\psi_{i} = \epsilon_{i}\psi_{i}
$$
$$
\left ( \int {\frac{\rho(\vec{r_{2}})}{r_{12}}} \,d\vec{r_{2}} + V_{XC}(\vec{r_{1}}) - \sum_{A}^{M} {\frac{Z_{A}}{r_{1A}}} \right ) \psi_{i} = \epsilon_{i}\psi_{i}
$$
K-S orbital
$$
\psi_{i} = \sum_{\mu=1}^{L} c_{\mu i}\eta_{\mu}
$$
Roothaan equations
$$\hat{F}^{KS}_{\mu\nu}\hat{C} = \hat{S}_{\mu \nu}\hat{C}\hat{\epsilon}$$
Kohn-Sham matrix and overlap matrix
$$\begin{align*}
F_{\mu \nu}^{KS} &= \int {\eta_{\mu} (\vec{r_{1}}) \hat{f}^{KS}(\vec{r_{1}}) \eta_{\nu}(\vec{r_{1}})
} \, d\vec{r_{1}} \\
S_{\mu \nu} &= \int {\eta_{\mu}(\vec{r_{1}})\eta_{\nu}(\vec{r_{1}})
} \, d\vec{r_{1}} \\
\end{align*}$$
Extended Kohn-Sham Operator
$$\begin{align*}
\hat{F}_{\mu \nu}^{KS}
&= h_{\mu\nu} + \int {
\eta_{\mu} (\vec{r_{1}}) \left (
\int {
\frac{\rho(\vec{r_{2}})}{r_{12}}
} \, d\vec{r_{2}}
+ V_{XC}(\vec{r_{1}})
\right ) \eta_{\nu} (\vec{r_{1}})
} \, d\vec{r_{1}} \\
&= \int {
\eta_{\mu} (\vec{r_{1}}) \left (
-\frac{1}{2} \nabla^{2}
- \sum_{A}^{M} \frac{Z_{A}}{r_{1A}}
+ \int {
\frac{\rho(\vec{r_{2}})}{r_{12}}
} \, d\vec{r_{2}}
+ V_{XC}(\vec{r_{1}})
\right ) \eta_{\nu} (\vec{r_{1}})
} \, d\vec{r_{1}} \\
h_{\mu\nu} &= \int {
\eta_{\mu} (\vec{r_{1}}) \left (
-\frac{1}{2} \nabla^{2}
- \sum_{A}^{M} \frac{Z_{A}}{r_{1A}}
\right ) \eta_{\nu} (\vec{r_{1}})
} \, d\vec{r_{1}} \\
\end{align*}$$
Charge density in the LCAO scheme
$$
\rho(\vec{r}) = \sum_{i}^{L}\left \vert \psi_{i}(\vec{r}) \right \vert^{2} = \sum_{\mu}^{L}\sum_{\nu}^{L}P_{\mu\nu}\eta_{\mu}(\vec{r})\eta_{\nu}(\vec{r})
$$
$$
\text{density matrix,}\quad P_{\mu\nu} = \sum_{i}^{N} c_{\mu i}c_{\nu i}
$$
Coulomb contribution and exchange-correlation and Hartree-Fock exchange integral
$$\begin{align*}
J_{\mu\nu} &=
\sum_{\lambda}^{L}\sum_{\sigma}^{L} P_{\lambda\sigma} \iint \eta_{\mu}(\vec{r_{1}})\eta_{\nu}(\vec{r_{1}}) \frac{1}{r_{12}} \eta_{\lambda}(\vec{r_{2}})\eta_{\sigma}(\vec{r_{2}}) \, d\vec{r_{1}}\,d\vec{r_{2}} \\
V_{\mu\nu}^{XC} &= \int \eta_{\mu}(\vec{r_{1}})V_{XC}(\vec{r_{1}})\eta_{\nu}(\vec{r_{1}})\,d\vec{r_{1}}\\
K_{\mu\nu} &=
\sum_{\lambda}^{L}\sum_{\sigma}^{L} P_{\lambda\sigma} \iint \eta_{\mu}(\vec{x_{1}})\eta_{\lambda}(\vec{x_{1}}) \frac{1}{r_{12}} \eta_{\nu}(\vec{x_{2}})\eta_{\sigma}(\vec{x_{2}}) \, d\vec{x_{1}}\,d\vec{x_{2}} \\
\end{align*}$$
Basis sets
Slater-Type Orbitals (STO)
$$\eta^{STO} = Nr^{n-1}e^{-\beta r}Y_{lm}(\theta, \phi)$$
Gaussian-Type Orbitals (GTO)
$$\eta^{GTO} = Nx^{l}y^{m}z^{b}e^{-\alpha r}$$
Contracted Gaussian Functions (CGF)
$$
\eta_{\tau}^{CGF} = \sum_{a}^{A} d_{a\tau}\eta_{a}^{GTO}
$$
Self-Consistent Field
[REF|10]
DFT applications
Applications in quantum chemistry
Applications in solid state physics
DFT in Molecular Electronics
Reference
- List of quantum chemistry and solid state physics software
- Korea Supercomputing Center
- Quantum Espresso
- CALYPSO
- Introduction to Density Functional Theory(Juan Carlos Cuevas)
- SciFinder - Chemical Abstracts Service
- Crystallography Open Database
- Basis Set
- DFT_L1
- DFT_L2
- DFT_L3
- DFT_L4
- DFT_L5
- DFT_L6
- DFT_L7
- DFT_L8
- DFT_L9
- DFT_L10
- DFT_L11
- Theoretical-Physics
- Self-Consistent Field
- Solving Hartree Fock Equation using a Basis Set HF Roothaan equation
- Computer-aided study of selective flavonoids against chikungunya virus replication using molecular docking and DFT-based approach
- (2021) Learning the exchange-correlation functional from nature with fully differentiable density functional theory
- (2020) Completing density functional theory by machine learning hidden messages from molecules
Related Articles